655 research outputs found

    Fringe Visibility Estimators for the Palomar Testbed Interferometer

    Get PDF
    Visibility estimators and their performance are presented for use with the Palomar Testbed Interferometer (PTI). One operational mode of PTI is single-baseline visibility measurement using pathlength modulation with synchronous readout by a NICMOS-3 infrared array. Visibility is estimated from the fringe quadratures, either incoherently, or using source phase referencing to provide a longer coherent integration time. The visibility estimators differ those used with photon-counting detectors in order to account for biases attributable to detector offsets and read noise. The performance of these estimators is affected not only by photon noise, but also by the detector read noise and errors in estimating the bias corrections, which affect the incoherent and coherent estimators differently. Corrections for visibility loss in the coherent estimators using the measured tracking jitter are also presented.Comment: PASP in press (Jan 99). 13 Pages, no figure

    The Mount Wilson optical interferometer: The first automated instrument and the prospects for lunar interferometry

    Get PDF
    Before contemplating an optical interferometer on the Moon one must first review the accomplishments achieved by this technology in scientific applications for astronomy. This will be done by presenting the technical status of optical interferometry as achieved by the Mount Wilson Optical Interferometer. The further developments needed for a future lunar-based interferometer are discussed

    Binary star astronomy with optical interferometry

    Get PDF
    The Mark III Interferometer on Mt. Wilson, a long-baseline optical interferometer, was in daily operation for more that seven years. During that time it achieved milliarcsecond angular resolution for binary star astronomy, with submilliarcsecond accuracy. For the first time many spectroscopic binaries have been resolved, including binaries in which the companion cannot be detected with spectroscopy. The high angular resolution means that the traditional gap between visual and spectroscopic binaries has been decreased by more than an order of magnitude. In order to confirm the performance of the Mark III Interferometer, this paper uses the results of astronomical observations, and compares the Mark III Interferometer with other high-resolution techniques, including astrometry, lunar occultation, photometry, speckle, and spectroscopy. Comparisons for a variety of binary stars among these techniques indicate that long baseline optical interferometry proves a reliable, fully automatic, daily accessible astronomical capability for achieving high resolution, high accuracy, high dynamic range, and high photometric measurement precision for the study of binary stars

    The Palomar Testbed Interferometer

    Get PDF
    The Palomar Testbed Interferometer (PTI) is a long-baseline infrared interferometer located at Palomar Observatory, California. It was built as a testbed for interferometric techniques applicable to the Keck Interferometer. First fringes were obtained in July 1995. PTI implements a dual-star architecture, tracking two stars simultaneously for phase referencing and narrow-angle astrometry. The three fixed 40-cm apertures can be combined pair-wise to provide baselines to 110 m. The interferometer actively tracks the white-light fringe using an array detector at 2.2 um and active delay lines with a range of +/- 38 m. Laser metrology of the delay lines allows for servo control, and laser metrology of the complete optical path enables narrow-angle astrometric measurements. The instrument is highly automated, using a multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi

    Masses, Luminosities, and Orbital Coplanarities of the mu Orionis Quadruple Star System from PHASES Differential Astrometry

    Full text link
    mu Orionis was identified by spectroscopic studies as a quadruple star system. Seventeen high precision differential astrometry measurements of mu Ori have been collected by the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). These show both the motion of the long period binary orbit and short period perturbations superimposed on that caused by each of the components in the long period system being themselves binaries. The new measurements enable the orientations of the long period binary and short period subsystems to be determined. Recent theoretical work predicts the distribution of relative inclinations between inner and outer orbits of hierarchical systems to peak near 40 and 140 degrees. The degree of coplanarity of this complex system is determined, and the angle between the planes of the A-B and Aa-Ab orbits is found to be 136.7 +/- 8.3 degrees, near the predicted distribution peak at 140 degrees; this result is discussed in the context of the handful of systems with established mutual inclinations. The system distance and masses for each component are obtained from a combined fit of the PHASES astrometry and archival radial velocity observations. The component masses have relative precisions of 5% (component Aa), 15% (Ab), and 1.4% (each of Ba and Bb). The median size of the minor axes of the uncertainty ellipses for the new measurements is 20 micro-arcseconds. Updated orbits for delta Equulei, kappa Pegasi, and V819 Herculis are also presented.Comment: 12 Pages, Accepted for publication in A

    The PHASES Differential Astrometry Data Archive. I. Measurements and Description

    Get PDF
    The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) monitored 51 sub-arcsecond binary systems to determine precision binary orbits, study the geometries of triple and quadruple star systems, and discover previously unknown faint astrometric companions as small as giant planets. PHASES measurements made with the Palomar Testbed Interferometer (PTI) from 2002 until PTI ceased normal operations in late 2008 are presented. Infrared differential photometry of several PHASES targets were measured with Keck Adaptive Optics and are presented.Comment: 33 pages emulateapj, Accepted to A

    The PRIMA fringe sensor unit

    Full text link
    The Fringe Sensor Unit (FSU) is the central element of the Phase Referenced Imaging and Micro-arcsecond Astrometry (PRIMA) dual-feed facility and provides fringe sensing for all observation modes, comprising off-axis fringe tracking, phase referenced imaging, and high-accuracy narrow-angle astrometry. It is installed at the Very Large Telescope Interferometer (VLTI) and successfully servoed the fringe tracking loop during the initial commissioning phase. Unique among interferometric beam combiners, the FSU uses spatial phase modulation in bulk optics to retrieve real-time estimates of fringe phase after spatial filtering. A R=20 spectrometer across the K-band makes the retrieval of the group delay signal possible. The FSU was integrated and aligned at the VLTI in summer 2008. It yields phase and group delay measurements at sampling rates up to 2 kHz, which are used to drive the fringe tracking control loop. During the first commissioning runs, the FSU was used to track the fringes of stars with K-band magnitudes as faint as m_K=9.0, using two VLTI Auxiliary Telescopes (AT) and baselines of up to 96 m. Fringe tracking using two Very Large Telescope (VLT) Unit Telescopes (UT) was demonstrated. During initial commissioning and combining stellar light with two ATs, the FSU showed its ability to improve the VLTI sensitivity in K-band by more than one magnitude towards fainter objects, which is of fundamental importance to achieve the scientific objectives of PRIMA.Comment: 19 pages, 23 figures. minor changes and language editing. this version equals the published articl

    Differential phase technique with the Keck Interferometer

    Get PDF
    We present the motivation and development of the novel `differential phase' technique being developed for the Keck Interferometer with the goal of detecting faint companions near a bright source. The differential phase technique uses simultaneous phase measurements at several infrared wavelengths to detect the astrophysical signature produced by a chromatic, asymmetric brightness distribution. We discuss the origin of the differential phase signature and present results of test observations taken at the Palomar Testbed Interferometer. One important test result is the larger than expected effect of water vapor turbulence on these multi-wavelength observations due to the infrared dispersion of water. In order to reach the design goal of 0.1 milliradians, the phase noise caused by both temperature and water vapor fluctuations in the atmosphere must be corrected, and we discuss several ways to achieve this
    corecore